Nuprl Lemma : atom2-deq_wf

Atom2Deq ∈ EqDecider(Atom2)


Proof




Definitions occuring in Statement :  atom2-deq: Atom2Deq deq: EqDecider(T) atom: Atom$n member: t ∈ T
Definitions unfolded in proof :  deq: EqDecider(T) atom2-deq: Atom2Deq member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  atom2-deq-aux eq_atom_wf2 assert_of_eq_atom2 equal_wf assert_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid dependent_set_memberEquality lambdaEquality sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis atomnEquality lambdaFormation independent_pairFormation productElimination independent_isectElimination applyEquality

Latex:
Atom2Deq  \mmember{}  EqDecider(Atom2)



Date html generated: 2016_05_14-PM-03_33_51
Last ObjectModification: 2015_12_26-PM-06_00_51

Theory : decidable!equality


Home Index