Nuprl Lemma : id-graph-edge_wf
∀[S:Id List]. ∀[G:Graph(S)]. ∀[i:{i:Id| (i ∈ S)} ]. ∀[j:Id].  ((i⟶j)∈G ∈ ℙ)
Proof
Definitions occuring in Statement : 
id-graph-edge: (i⟶j)∈G
, 
id-graph: Graph(S)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
id-graph-edge: (i⟶j)∈G
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
id-graph: Graph(S)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
l_member_wf, 
Id_wf, 
subtype_rel_list, 
set_wf, 
id-graph_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[S:Id  List].  \mforall{}[G:Graph(S)].  \mforall{}[i:\{i:Id|  (i  \mmember{}  S)\}  ].  \mforall{}[j:Id].    ((i{}\mrightarrow{}j)\mmember{}G  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_37_45
Last ObjectModification:
2015_12_26-PM-05_58_56
Theory : decidable!equality
Home
Index