Nuprl Lemma : id-graph-edge_wf

[S:Id List]. ∀[G:Graph(S)]. ∀[i:{i:Id| (i ∈ S)} ]. ∀[j:Id].  ((i⟶j)∈G ∈ ℙ)


Proof




Definitions occuring in Statement :  id-graph-edge: (i⟶j)∈G id-graph: Graph(S) Id: Id l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  id-graph-edge: (i⟶j)∈G uall: [x:A]. B[x] member: t ∈ T id-graph: Graph(S) subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_member_wf Id_wf subtype_rel_list set_wf id-graph_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality setEquality independent_isectElimination lambdaEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[S:Id  List].  \mforall{}[G:Graph(S)].  \mforall{}[i:\{i:Id|  (i  \mmember{}  S)\}  ].  \mforall{}[j:Id].    ((i{}\mrightarrow{}j)\mmember{}G  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_37_45
Last ObjectModification: 2015_12_26-PM-05_58_56

Theory : decidable!equality


Home Index