Nuprl Lemma : list-diff-subset

[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  l_subset(T;as-bs;as)


Proof




Definitions occuring in Statement :  list-diff: as-bs l_subset: l_subset(T;as;bs) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_subset: l_subset(T;as;bs) implies:  Q list-diff: as-bs member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  member_filter_2 l_member_wf bnot_wf deq-member_wf list-diff_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut lemma_by_obid isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality hypothesis setElimination rename cumulativity setEquality because_Cache productElimination independent_functionElimination sqequalRule universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.    l\_subset(T;as-bs;as)



Date html generated: 2016_05_14-PM-03_29_50
Last ObjectModification: 2015_12_26-PM-06_02_59

Theory : decidable!equality


Home Index