Nuprl Lemma : map-l-union-1

[T:Type]. ∀[f:T ⟶ T]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].
  map(f;as ⋃ bs) map(f;as) ⋃ map(f;bs) supposing Inj({x:T| (x ∈ as ⋃ bs)} ;T;f)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_member: (x ∈ l) map: map(f;as) list: List deq: EqDecider(T) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  inject_wf l_member_wf l-union_wf subtype_rel_dep_function set_wf list_wf deq_wf map-l-union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality sqequalRule lambdaEquality independent_isectElimination setElimination rename because_Cache lambdaFormation isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].
    map(f;as  \mcup{}  bs)  \msim{}  map(f;as)  \mcup{}  map(f;bs)  supposing  Inj(\{x:T|  (x  \mmember{}  as  \mcup{}  bs)\}  ;T;f)



Date html generated: 2016_05_14-PM-03_24_58
Last ObjectModification: 2015_12_26-PM-06_22_08

Theory : decidable!equality


Home Index