Nuprl Lemma : map-l-union-1
∀[T:Type]. ∀[f:T ⟶ T]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].
  map(f;as ⋃ bs) ~ map(f;as) ⋃ map(f;bs) supposing Inj({x:T| (x ∈ as ⋃ bs)} T;f)
Proof
Definitions occuring in Statement : 
l-union: as ⋃ bs
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
inject_wf, 
l_member_wf, 
l-union_wf, 
subtype_rel_dep_function, 
set_wf, 
list_wf, 
deq_wf, 
map-l-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].
    map(f;as  \mcup{}  bs)  \msim{}  map(f;as)  \mcup{}  map(f;bs)  supposing  Inj(\{x:T|  (x  \mmember{}  as  \mcup{}  bs)\}  ;T;f)
Date html generated:
2016_05_14-PM-03_24_58
Last ObjectModification:
2015_12_26-PM-06_22_08
Theory : decidable!equality
Home
Index