Nuprl Lemma : map-l-union

[T,T':Type]. ∀[f:T ⟶ T']. ∀[eq:EqDecider(T)]. ∀[eq':EqDecider(T')]. ∀[as,bs:T List].
  map(f;as ⋃ bs) map(f;as) ⋃ map(f;bs) supposing Inj({x:T| (x ∈ as ⋃ bs)} ;T';f)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_member: (x ∈ l) map: map(f;as) list: List deq: EqDecider(T) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} or: P ∨ Q l-union: as ⋃ bs cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) inject: Inj(A;B;f) iff: ⇐⇒ Q rev_implies:  Q insert: insert(a;L) has-value: (a)↓ bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf inject_wf l_member_wf l-union_wf subtype_rel_dep_function set_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma reduce_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma reduce_cons_lemma insert_wf list_wf deq_wf member-insert member_wf eval_list_sq subtype_rel_list top_wf map_wf value-type-has-value list-value-type deq-member_wf bool_wf eqtt_to_assert assert-deq-member eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot member-map and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom setEquality cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionEquality universeEquality inrFormation hyp_replacement imageMemberEquality functionExtensionality callbyvalueReduce equalityElimination productEquality inlFormation

Latex:
\mforall{}[T,T':Type].  \mforall{}[f:T  {}\mrightarrow{}  T'].  \mforall{}[eq:EqDecider(T)].  \mforall{}[eq':EqDecider(T')].  \mforall{}[as,bs:T  List].
    map(f;as  \mcup{}  bs)  \msim{}  map(f;as)  \mcup{}  map(f;bs)  supposing  Inj(\{x:T|  (x  \mmember{}  as  \mcup{}  bs)\}  ;T';f)



Date html generated: 2017_04_17-AM-09_09_58
Last ObjectModification: 2017_02_27-PM-05_18_16

Theory : decidable!equality


Home Index