Nuprl Lemma : name_eq-normalize-name
∀[X,F,G:Top]. ∀[a,b:Name].
  (case name_eq(a;b) ∧b X of inl(x) => F[x;a] | inr(x) => G[x] ~ case name_eq(a;b) ∧b X
   of inl(x) =>
   F[x;b]
   | inr(x) =>
   G[x])
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y), 
name: Name, 
band: p ∧b q, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
so_apply: x[s], 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
name: Name, 
sq_type: SQType(T), 
guard: {T}, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
name_eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-name_eq, 
subtype_base_sq, 
name_wf, 
list_subtype_base, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
top_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
because_Cache, 
voidElimination, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[X,F,G:Top].  \mforall{}[a,b:Name].
    (case  name\_eq(a;b)  \mwedge{}\msubb{}  X  of  inl(x)  =>  F[x;a]  |  inr(x)  =>  G[x]  \msim{}  case  name\_eq(a;b)  \mwedge{}\msubb{}  X
      of  inl(x)  =>
      F[x;b]
      |  inr(x)  =>
      G[x])
 Date html generated: 
2017_04_17-AM-09_17_20
 Last ObjectModification: 
2017_02_27-PM-05_21_46
Theory : decidable!equality
Home
Index