Nuprl Lemma : name_eq_symmetry

[x,y:Name].  (name_eq(x;y) name_eq(y;x))


Proof




Definitions occuring in Statement :  name_eq: name_eq(x;y) name: Name uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q uiff: uiff(P;Q) sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool name_eq_wf equal_wf name_wf assert-name_eq assert_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination hypothesisEquality independent_pairFormation lambdaFormation equalitySymmetry addLevel productElimination impliesFunctionality because_Cache dependent_functionElimination equalityTransitivity independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality

Latex:
\mforall{}[x,y:Name].    (name\_eq(x;y)  \msim{}  name\_eq(y;x))



Date html generated: 2016_05_14-PM-03_34_31
Last ObjectModification: 2015_12_26-PM-06_00_11

Theory : decidable!equality


Home Index