Nuprl Lemma : not-name_eq-implies-sq-bfalse

[hdr1,hdr2:Name].  name_eq(hdr1;hdr2) ff supposing ¬(hdr1 hdr2 ∈ Name)


Proof




Definitions occuring in Statement :  name_eq: name_eq(x;y) name: Name bfalse: ff uimplies: supposing a uall: [x:A]. B[x] not: ¬A sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A uiff: uiff(P;Q) and: P ∧ Q prop: sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq bool_subtype_base not_assert_elim name_eq_wf assert-name_eq assert_wf not_wf equal_wf name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality addLevel impliesFunctionality productElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality

Latex:
\mforall{}[hdr1,hdr2:Name].    name\_eq(hdr1;hdr2)  \msim{}  ff  supposing  \mneg{}(hdr1  =  hdr2)



Date html generated: 2016_05_14-PM-03_34_23
Last ObjectModification: 2015_12_26-PM-06_00_20

Theory : decidable!equality


Home Index