Nuprl Lemma : strict-majority-or-first_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:{L:T List| ||L|| ≥ ].  (strict-majority-or-first(eq;L) ∈ T)


Proof




Definitions occuring in Statement :  strict-majority-or-first: strict-majority-or-first(eq;L) length: ||as|| list: List deq: EqDecider(T) uall: [x:A]. B[x] ge: i ≥  member: t ∈ T set: {x:A| B[x]}  natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strict-majority-or-first: strict-majority-or-first(eq;L) all: x:A. B[x] implies:  Q uimplies: supposing a prop: so_lambda: λ2x.t[x] ge: i ≥  so_apply: x[s]
Lemmas referenced :  strict-majority_wf unit_wf2 hd_wf equal_wf set_wf list_wf ge_wf length_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis unionEquality lambdaFormation equalityTransitivity equalitySymmetry unionElimination independent_isectElimination dependent_functionElimination independent_functionElimination axiomEquality lambdaEquality natural_numberEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:\{L:T  List|  ||L||  \mgeq{}  1  \}  ].    (strict-majority-or-first(eq;L)  \mmember{}  T)



Date html generated: 2019_06_20-PM-01_54_57
Last ObjectModification: 2018_08_21-PM-01_55_23

Theory : decidable!equality


Home Index