Nuprl Lemma : strict-majority-or-first_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:{L:T List| ||L|| ≥ 1 } ].  (strict-majority-or-first(eq;L) ∈ T)
Proof
Definitions occuring in Statement : 
strict-majority-or-first: strict-majority-or-first(eq;L)
, 
length: ||as||
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strict-majority-or-first: strict-majority-or-first(eq;L)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
ge: i ≥ j 
, 
so_apply: x[s]
Lemmas referenced : 
strict-majority_wf, 
unit_wf2, 
hd_wf, 
equal_wf, 
set_wf, 
list_wf, 
ge_wf, 
length_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
lambdaEquality, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:\{L:T  List|  ||L||  \mgeq{}  1  \}  ].    (strict-majority-or-first(eq;L)  \mmember{}  T)
Date html generated:
2019_06_20-PM-01_54_57
Last ObjectModification:
2018_08_21-PM-01_55_23
Theory : decidable!equality
Home
Index