Nuprl Lemma : strict-majority_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (strict-majority(eq;L) ∈ T?)
Proof
Definitions occuring in Statement : 
strict-majority: strict-majority(eq;L), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
strict-majority: strict-majority(eq;L), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat_plus: ℕ+, 
prop: ℙ, 
pi2: snd(t), 
implies: P ⇒ Q, 
or: P ∨ Q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
cons: [a / b], 
top: Top, 
bfalse: ff
Lemmas referenced : 
filter_wf5, 
count-repeats_wf, 
l_member_wf, 
subtype_rel_list, 
nat_plus_wf, 
subtype_rel_product, 
lt_int_wf, 
length_wf, 
list_wf, 
let_wf, 
unit_wf2, 
list-cases, 
null_nil_lemma, 
it_wf, 
product_subtype_list, 
null_cons_lemma, 
hd_wf, 
cons_wf, 
length_cons_ge_one, 
top_wf, 
pi1_wf, 
equal_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
intEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
independent_isectElimination, 
setElimination, 
rename, 
multiplyEquality, 
natural_numberEquality, 
setEquality, 
unionEquality, 
dependent_functionElimination, 
unionElimination, 
inrEquality, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inlEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    (strict-majority(eq;L)  \mmember{}  T?)
 Date html generated: 
2017_04_17-AM-09_09_15
 Last ObjectModification: 
2017_02_27-PM-05_17_26
Theory : decidable!equality
Home
Index