Nuprl Lemma : strict-majority_functionality

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].
  (strict-majority(eq;L1) strict-majority(eq;L2) ∈ (T?)) supposing 
     ((||L1|| ||L2|| ∈ ℤand 
     (∀x:T. (||filter(λy.(eq x);L1)|| ||filter(λy.(eq x);L2)|| ∈ ℤ)))


Proof




Definitions occuring in Statement :  strict-majority: strict-majority(eq;L) length: ||as|| filter: filter(P;l) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] unit: Unit apply: a lambda: λx.A[x] union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] all: x:A. B[x] deq: EqDecider(T) so_apply: x[s] implies:  Q uiff: uiff(P;Q) and: P ∧ Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  equal_wf length_wf all_wf filter_wf5 l_member_wf strict-majority-property strict-majority_wf unit_wf2 less_than_wf squash_wf true_wf iff_weakening_equal equal-unit
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry lambdaEquality lambdaFormation setElimination rename applyEquality setEquality unionEquality unionElimination dependent_functionElimination independent_functionElimination productElimination independent_pairFormation independent_isectElimination imageElimination multiplyEquality natural_numberEquality imageMemberEquality baseClosed universeEquality inrEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    (strict-majority(eq;L1)  =  strict-majority(eq;L2))  supposing 
          ((||L1||  =  ||L2||)  and 
          (\mforall{}x:T.  (||filter(\mlambda{}y.(eq  y  x);L1)||  =  ||filter(\mlambda{}y.(eq  y  x);L2)||)))



Date html generated: 2017_04_17-AM-09_09_36
Last ObjectModification: 2017_02_27-PM-05_17_32

Theory : decidable!equality


Home Index