Nuprl Lemma : strict-majority_functionality
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].
  (strict-majority(eq;L1) = strict-majority(eq;L2) ∈ (T?)) supposing 
     ((||L1|| = ||L2|| ∈ ℤ) and 
     (∀x:T. (||filter(λy.(eq y x);L1)|| = ||filter(λy.(eq y x);L2)|| ∈ ℤ)))
Proof
Definitions occuring in Statement : 
strict-majority: strict-majority(eq;L), 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
unit: Unit, 
apply: f a, 
lambda: λx.A[x], 
union: left + right, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
deq: EqDecider(T), 
so_apply: x[s], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q
Lemmas referenced : 
equal_wf, 
length_wf, 
all_wf, 
filter_wf5, 
l_member_wf, 
strict-majority-property, 
strict-majority_wf, 
unit_wf2, 
less_than_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
equal-unit
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
setEquality, 
unionEquality, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
imageElimination, 
multiplyEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
inrEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    (strict-majority(eq;L1)  =  strict-majority(eq;L2))  supposing 
          ((||L1||  =  ||L2||)  and 
          (\mforall{}x:T.  (||filter(\mlambda{}y.(eq  y  x);L1)||  =  ||filter(\mlambda{}y.(eq  y  x);L2)||)))
Date html generated:
2017_04_17-AM-09_09_36
Last ObjectModification:
2017_02_27-PM-05_17_32
Theory : decidable!equality
Home
Index