Nuprl Lemma : deq-exists
∀[T:Type]. (EqDecider(T) ⇐⇒ ∀x,y:T.  Dec(x = y ∈ T))
Proof
Definitions occuring in Statement : 
deq: EqDecider(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
deq_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
deq-witness_wf, 
mk_deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
rename, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
introduction
Latex:
\mforall{}[T:Type].  (EqDecider(T)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x,y:T.    Dec(x  =  y))
Date html generated:
2016_05_14-AM-06_06_42
Last ObjectModification:
2015_12_26-AM-11_46_41
Theory : equality!deciders
Home
Index