Step
*
2
1
2
of Lemma
equipollent-exp
1. n : ℤ
2. [%1] : 0 < n
3. ∀b:ℕ. ℕn - 1 ⟶ ℕb ~ ℕb^(n - 1)
4. 1 ≤ n
5. b : ℕ
6. ℕn ⟶ ℕb ~ ℕb × (ℕn - 1 ⟶ ℕb)
⊢ ℕn ⟶ ℕb ~ ℕb * b^(n - 1)
BY
{ (InstHyp [⌜b⌝] 3⋅ THEN Auto) }
1
1. n : ℤ
2. [%1] : 0 < n
3. ∀b:ℕ. ℕn - 1 ⟶ ℕb ~ ℕb^(n - 1)
4. 1 ≤ n
5. b : ℕ
6. ℕn ⟶ ℕb ~ ℕb × (ℕn - 1 ⟶ ℕb)
7. ℕn - 1 ⟶ ℕb ~ ℕb^(n - 1)
⊢ ℕn ⟶ ℕb ~ ℕb * b^(n - 1)
Latex:
Latex:
1. n : \mBbbZ{}
2. [\%1] : 0 < n
3. \mforall{}b:\mBbbN{}. \mBbbN{}n - 1 {}\mrightarrow{} \mBbbN{}b \msim{} \mBbbN{}b\^{}(n - 1)
4. 1 \mleq{} n
5. b : \mBbbN{}
6. \mBbbN{}n {}\mrightarrow{} \mBbbN{}b \msim{} \mBbbN{}b \mtimes{} (\mBbbN{}n - 1 {}\mrightarrow{} \mBbbN{}b)
\mvdash{} \mBbbN{}n {}\mrightarrow{} \mBbbN{}b \msim{} \mBbbN{}b * b\^{}(n - 1)
By
Latex:
(InstHyp [\mkleeneopen{}b\mkleeneclose{}] 3\mcdot{} THEN Auto)
Home
Index