Nuprl Lemma : equipollent-exp

n,b:ℕ.  ℕn ⟶ ℕ~ ℕb^n


Proof




Definitions occuring in Statement :  equipollent: B exp: i^n int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] exp: i^n subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} equipollent: B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True biject: Bij(A;B;f) inject: Inj(A;B;f) respects-equality: respects-equality(S;T) surject: Surj(A;B;f) pi2: snd(t) pi1: fst(t) sq_type: SQType(T) squash: T nequal: a ≠ b ∈  assert: b bnot: ¬bb
Lemmas referenced :  istype-nat equipollent_wf int_seg_wf subtract_wf exp_wf2 nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-less_than primrec-wf2 nat_wf primrec0_lemma equipollent-void-domain primrec-unroll lt_int_wf equal-wf-base bool_wf int_subtype_base assert_wf less_than_wf le_int_wf le_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int decidable__lt subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self biject_wf respects-equality-product respects-equality-trivial respects-equality-function istype-base pi2_wf pi1_wf decidable__equal_int subtype_base_sq int_seg_properties intformeq_wf int_formula_prop_eq_lemma istype-assert not_wf btrue_neq_bfalse iff_weakening_equal btrue_wf eq_int_eq_true istype-universe true_wf squash_wf equal_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eq_int_wf assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot primrec_wf equipollent-zero product_functionality_wrt_equipollent_right exp_wf4 equipollent-multiply equipollent_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin rename setElimination sqequalRule Error :functionIsType,  introduction extract_by_obid hypothesis Error :universeIsType,  sqequalHypSubstitution isectElimination functionEquality natural_numberEquality hypothesisEquality Error :dependent_set_memberEquality_alt,  dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :setIsType,  Error :inhabitedIsType,  lambdaFormation isect_memberEquality voidEquality baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry equalityElimination productElimination Error :equalityIstype,  independent_pairEquality Error :productIsType,  because_Cache addEquality minusEquality multiplyEquality productEquality sqequalBase applyLambdaEquality Error :functionExtensionality_alt,  instantiate cumulativity intEquality imageMemberEquality universeEquality imageElimination promote_hyp Error :equalityIsType1

Latex:
\mforall{}n,b:\mBbbN{}.    \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b  \msim{}  \mBbbN{}b\^{}n



Date html generated: 2019_06_20-PM-02_17_19
Last ObjectModification: 2019_01_02-PM-00_32_04

Theory : equipollence!!cardinality!


Home Index