Nuprl Lemma : equipollent-zero

[A:Type]. (A ~ ℕ⇐⇒ ¬A)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A natural_number: $n universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) all: x:A. B[x] top: Top subtype_rel: A ⊆B biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f)
Lemmas referenced :  int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties not_wf biject_wf int_seg_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination hypothesisEquality lemma_by_obid isectElimination functionEquality natural_numberEquality lambdaEquality universeEquality productElimination rename introduction applyEquality because_Cache setElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[A:Type].  (A  \msim{}  \mBbbN{}0  \mLeftarrow{}{}\mRightarrow{}  \mneg{}A)



Date html generated: 2016_05_14-PM-04_01_46
Last ObjectModification: 2016_01_14-PM-11_06_10

Theory : equipollence!!cardinality!


Home Index