Nuprl Lemma : equipollent-zero
∀[A:Type]. (A ~ ℕ0 
⇐⇒ ¬A)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
not_wf, 
biject_wf, 
int_seg_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
lambdaEquality, 
universeEquality, 
productElimination, 
rename, 
introduction, 
applyEquality, 
because_Cache, 
setElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[A:Type].  (A  \msim{}  \mBbbN{}0  \mLeftarrow{}{}\mRightarrow{}  \mneg{}A)
Date html generated:
2016_05_14-PM-04_01_46
Last ObjectModification:
2016_01_14-PM-11_06_10
Theory : equipollence!!cardinality!
Home
Index