Nuprl Lemma : equipollent-void-domain

[A:Type]. ℕ0 ⟶ ~ ℕ1


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a not: ¬A guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties singleton-type-void-domain singleton-type-one int_seg_wf equipollent-singletons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality hypothesis hypothesisEquality independent_functionElimination universeEquality sqequalRule lambdaEquality independent_isectElimination lambdaFormation because_Cache setElimination rename productElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[A:Type].  \mBbbN{}0  {}\mrightarrow{}  A  \msim{}  \mBbbN{}1



Date html generated: 2016_05_14-PM-04_02_24
Last ObjectModification: 2016_01_14-PM-11_05_49

Theory : equipollence!!cardinality!


Home Index