Nuprl Lemma : equipollent-function-product

[A,B,C:Type].  C ⟶ (A × B) C ⟶ A × (C ⟶ B)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: surject: Surj(A;B;f) pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  pi1_wf pi2_wf equal_wf biject_wf pair-eta subtype_rel_product top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality independent_pairEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality hypothesis functionEquality productEquality independent_pairFormation lambdaFormation universeEquality functionExtensionality equalityUniverse levelHypothesis because_Cache productElimination independent_isectElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[A,B,C:Type].    C  {}\mrightarrow{}  (A  \mtimes{}  B)  \msim{}  C  {}\mrightarrow{}  A  \mtimes{}  (C  {}\mrightarrow{}  B)



Date html generated: 2016_05_14-PM-04_00_44
Last ObjectModification: 2015_12_26-PM-07_44_02

Theory : equipollence!!cardinality!


Home Index