Nuprl Lemma : equipollent-function-product
∀[A,B,C:Type].  C ⟶ (A × B) ~ C ⟶ A × (C ⟶ B)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
pi1_wf, 
pi2_wf, 
equal_wf, 
biject_wf, 
pair-eta, 
subtype_rel_product, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
independent_pairEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
functionEquality, 
productEquality, 
independent_pairFormation, 
lambdaFormation, 
universeEquality, 
functionExtensionality, 
equalityUniverse, 
levelHypothesis, 
because_Cache, 
productElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A,B,C:Type].    C  {}\mrightarrow{}  (A  \mtimes{}  B)  \msim{}  C  {}\mrightarrow{}  A  \mtimes{}  (C  {}\mrightarrow{}  B)
Date html generated:
2016_05_14-PM-04_00_44
Last ObjectModification:
2015_12_26-PM-07_44_02
Theory : equipollence!!cardinality!
Home
Index