Nuprl Lemma : equipollent-product-com

[A,B:Type].  A × B × A


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) pi1: fst(t)
Lemmas referenced :  equal_wf biject_wf pi2_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality spreadEquality hypothesisEquality independent_pairEquality productEquality thin independent_pairFormation lambdaFormation sqequalRule cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination universeEquality productElimination applyEquality equalityUniverse levelHypothesis because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].    A  \mtimes{}  B  \msim{}  B  \mtimes{}  A



Date html generated: 2016_05_14-PM-04_00_39
Last ObjectModification: 2015_12_26-PM-07_44_00

Theory : equipollence!!cardinality!


Home Index