Nuprl Lemma : equipollent-union-function
∀[A,B,C:Type].  (A + B) ⟶ C ~ A ⟶ C × (B ⟶ C)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
biject_wf, 
pi1_wf, 
pi2_wf, 
squash_wf, 
true_wf, 
eta_conv, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
independent_pairEquality, 
applyEquality, 
hypothesisEquality, 
inlEquality, 
inrEquality, 
functionEquality, 
unionEquality, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
universeEquality, 
applyLambdaEquality, 
productElimination, 
functionExtensionality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[A,B,C:Type].    (A  +  B)  {}\mrightarrow{}  C  \msim{}  A  {}\mrightarrow{}  C  \mtimes{}  (B  {}\mrightarrow{}  C)
Date html generated:
2019_06_20-PM-02_16_57
Last ObjectModification:
2018_08_21-PM-01_55_46
Theory : equipollence!!cardinality!
Home
Index