Nuprl Lemma : equipollent-union-function

[A,B,C:Type].  (A B) ⟶ A ⟶ C × (B ⟶ C)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf biject_wf pi1_wf pi2_wf squash_wf true_wf eta_conv subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality independent_pairEquality applyEquality hypothesisEquality inlEquality inrEquality functionEquality unionEquality independent_pairFormation lambdaFormation sqequalRule cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality universeEquality applyLambdaEquality productElimination functionExtensionality unionElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate because_Cache independent_isectElimination

Latex:
\mforall{}[A,B,C:Type].    (A  +  B)  {}\mrightarrow{}  C  \msim{}  A  {}\mrightarrow{}  C  \mtimes{}  (B  {}\mrightarrow{}  C)



Date html generated: 2019_06_20-PM-02_16_57
Last ObjectModification: 2018_08_21-PM-01_55_46

Theory : equipollence!!cardinality!


Home Index