Nuprl Lemma : equipollent_functionality_wrt_equipollent

[A1,A2,B1,B2:Type].  (A1 A2  B1 B2  (A1 B1 ⇐⇒ A2 B2))


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T guard: {T} rev_implies:  Q
Lemmas referenced :  equipollent_inversion equipollent_transitivity equipollent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis universeEquality

Latex:
\mforall{}[A1,A2,B1,B2:Type].    (A1  \msim{}  A2  {}\mRightarrow{}  B1  \msim{}  B2  {}\mRightarrow{}  (A1  \msim{}  B1  \mLeftarrow{}{}\mRightarrow{}  A2  \msim{}  B2))



Date html generated: 2016_05_14-PM-04_00_13
Last ObjectModification: 2015_12_26-PM-07_44_30

Theory : equipollence!!cardinality!


Home Index