Nuprl Lemma : equipollent_same
∀[A:Type]. A ~ A
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
equipollent_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
hypothesis, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  A  \msim{}  A
Date html generated:
2019_06_20-PM-02_16_47
Last ObjectModification:
2018_10_03-PM-11_59_10
Theory : equipollence!!cardinality!
Home
Index