Nuprl Lemma : equipollent_weakening

[A,B:Type].  supposing B ∈ Type


Proof




Definitions occuring in Statement :  equipollent: B uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  id-biject biject_wf exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename dependent_pairFormation lambdaEquality hypothesisEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination functionExtensionality applyEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  functionEquality instantiate universeEquality

Latex:
\mforall{}[A,B:Type].    A  \msim{}  B  supposing  A  =  B



Date html generated: 2016_10_21-AM-10_51_53
Last ObjectModification: 2016_07_12-AM-05_55_49

Theory : equipollence!!cardinality!


Home Index