Step
*
1
of Lemma
equiv-equipollent-iff-quotient-equipollent
1. [A] : Type
2. [B] : Type
3. E : A ⟶ A ⟶ ℙ
4. [%] : EquivRel(A;x,y.E[x;y])
5. g : (x,y:A//E[x;y]) ⟶ A
6. ∀c:x,y:A//E[x;y]. ((g c) = c ∈ (x,y:A//E[x;y]))
7. x,y:A//E[x;y] ~ B
⊢ A ~ B mod (a1,a2.E[a1;a2])
BY
{ RepeatFor 2 (D -1) }
1
1. [A] : Type
2. [B] : Type
3. E : A ⟶ A ⟶ ℙ
4. [%] : EquivRel(A;x,y.E[x;y])
5. g : (x,y:A//E[x;y]) ⟶ A
6. ∀c:x,y:A//E[x;y]. ((g c) = c ∈ (x,y:A//E[x;y]))
7. f : (x,y:A//E[x;y]) ⟶ B
8. Inj(x,y:A//E[x;y];B;f)
9. Surj(x,y:A//E[x;y];B;f)
⊢ A ~ B mod (a1,a2.E[a1;a2])
Latex:
Latex:
1. [A] : Type
2. [B] : Type
3. E : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
4. [\%] : EquivRel(A;x,y.E[x;y])
5. g : (x,y:A//E[x;y]) {}\mrightarrow{} A
6. \mforall{}c:x,y:A//E[x;y]. ((g c) = c)
7. x,y:A//E[x;y] \msim{} B
\mvdash{} A \msim{} B mod (a1,a2.E[a1;a2])
By
Latex:
RepeatFor 2 (D -1)
Home
Index