Nuprl Lemma : equiv-equipollent-iff-quotient-equipollent

[A,B:Type].
  ∀E:A ⟶ A ⟶ ℙ
    ((∃g:(x,y:A//E[x;y]) ⟶ A. ∀c:x,y:A//E[x;y]. ((g c) c ∈ (x,y:A//E[x;y])))
    ∨ (∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))))
     (A mod (a1,a2.E[a1;a2]) ⇐⇒ x,y:A//E[x;y] B) 
    supposing EquivRel(A;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv-equipollent: mod (a1,a2.E[a1; a2]) equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: rev_implies:  Q or: P ∨ Q exists: x:A. B[x] respects-equality: respects-equality(S;T) equipollent: B biject: Bij(A;B;f) equiv-equipollent: mod (a1,a2.E[a1; a2]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B squash: T surject: Surj(A;B;f) true: True guard: {T} quotient: x,y:A//B[x; y] inject: Inj(A;B;f) sq_stable: SqStable(P)
Lemmas referenced :  equiv-equipollent-implies-quotient-equipollent equiv-equipollent_wf equipollent_wf quotient_wf subtype-respects-equality subtype_quotient sq_stable_wf equal_wf equiv_rel_wf istype-universe subtype_rel_dep_function squash_wf surject_wf true_wf subtype_rel_self iff_weakening_equal quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache dependent_functionElimination sqequalRule Error :lambdaEquality_alt,  independent_isectElimination hypothesis independent_functionElimination Error :universeIsType,  applyEquality Error :inhabitedIsType,  unionElimination productElimination Error :unionIsType,  Error :productIsType,  Error :functionIsType,  Error :equalityIstype,  productEquality universeEquality instantiate Error :dependent_pairFormation_alt,  imageElimination imageMemberEquality baseClosed independent_pairEquality Error :functionIsTypeImplies,  axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality pertypeElimination pointwiseFunctionality promote_hyp sqequalBase

Latex:
\mforall{}[A,B:Type].
    \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
        ((\mexists{}g:(x,y:A//E[x;y])  {}\mrightarrow{}  A.  \mforall{}c:x,y:A//E[x;y].  ((g  c)  =  c))
        \mvee{}  (\mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}b:B.    SqStable(\mexists{}a:A.  ((f  a)  =  b))))
        {}\mRightarrow{}  (A  \msim{}  B  mod  (a1,a2.E[a1;a2])  \mLeftarrow{}{}\mRightarrow{}  x,y:A//E[x;y]  \msim{}  B) 
        supposing  EquivRel(A;x,y.E[x;y])



Date html generated: 2019_06_20-PM-02_17_45
Last ObjectModification: 2018_11_25-PM-01_10_41

Theory : equipollence!!cardinality!


Home Index