Nuprl Lemma : subtype_quotient
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  T ⊆r (x,y:T//E[x;y]) supposing EquivRel(T;x,y.E[x;y])
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
equiv_rel_wf, 
quotient_wf, 
member_wf, 
squash_wf, 
true_wf, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
pointwiseFunctionality, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
pertypeMemberEquality, 
productElimination, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    T  \msubseteq{}r  (x,y:T//E[x;y])  supposing  EquivRel(T;x,y.E[x;y])
Date html generated:
2016_10_21-AM-09_43_42
Last ObjectModification:
2016_07_12-AM-05_04_19
Theory : quot_1
Home
Index