Nuprl Lemma : equiv-equipollent-implies-quotient-equipollent

[A,B:Type].  ∀E:A ⟶ A ⟶ ℙmod (a1,a2.E[a1;a2])  x,y:A//E[x;y] supposing EquivRel(A;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv-equipollent: mod (a1,a2.E[a1; a2]) equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) squash: T cand: c∧ B sym: Sym(T;x,y.E[x; y]) prop: trans: Trans(T;x,y.E[x; y]) guard: {T} iff: ⇐⇒ Q rev_implies:  Q equiv-equipollent: mod (a1,a2.E[a1; a2]) exists: x:A. B[x] quotient: x,y:A//B[x; y] equipollent: B biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) subtype_rel: A ⊆B
Lemmas referenced :  equipollent_weakening_ext-eq quotient_wf squash_wf equiv_rel_squash quotient-squash equiv_rel_wf equiv-equipollent_wf equipollent_functionality_wrt_equipollent ext-eq_weakening equal-wf-base biject_wf quotient-member-eq subtype_quotient
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality functionExtensionality because_Cache Error :inhabitedIsType,  Error :universeIsType,  independent_isectElimination hypothesis independent_functionElimination independent_pairFormation imageElimination imageMemberEquality baseClosed productElimination dependent_functionElimination Error :functionIsType,  universeEquality pointwiseFunctionalityForEquality pertypeElimination equalityTransitivity equalitySymmetry productEquality Error :dependent_pairFormation_alt,  Error :equalityIsType1,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyLambdaEquality setElimination rename

Latex:
\mforall{}[A,B:Type].
    \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  A  \msim{}  B  mod  (a1,a2.E[a1;a2])  {}\mRightarrow{}  x,y:A//E[x;y]  \msim{}  B  supposing  EquivRel(A;x,y.E[x;y])



Date html generated: 2019_06_20-PM-02_17_39
Last ObjectModification: 2018_10_02-PM-11_35_29

Theory : equipollence!!cardinality!


Home Index