Step
*
2
1
1
1
1
1
of Lemma
equiv-equipollent-iff-quotient-equipollent
1. [A] : Type
2. [B] : Type
3. E : A ⟶ A ⟶ ℙ
4. [%] : EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B. SqStable(∃a:A. ((f a) = b ∈ B))
6. f : (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. ∀b:B. ∃a:x,y:A//E[x;y]. ((f a) = b ∈ B)
9. b : B
10. [a1] : Base
11. [b1] : Base
12. [c] : a1 = b1 ∈ (x,y:A//E[x;y])
13. (f a1) = b ∈ B
⊢ ↓∃a:A. ((f a) = b ∈ B)
BY
{ Unhide }
1
1. A : Type
2. B : Type
3. E : A ⟶ A ⟶ ℙ
4. EquivRel(A;x,y.E[x;y])
5. ∀f:A ⟶ B. ∀b:B. SqStable(∃a:A. ((f a) = b ∈ B))
6. f : (x,y:A//E[x;y]) ⟶ B
7. Inj(x,y:A//E[x;y];B;f)
8. ∀b:B. ∃a:x,y:A//E[x;y]. ((f a) = b ∈ B)
9. b : B
10. a1 : Base
11. b1 : Base
12. c : a1 = b1 ∈ (x,y:A//E[x;y])
13. (f a1) = b ∈ B
⊢ ↓∃a:A. ((f a) = b ∈ B)
Latex:
Latex:
1. [A] : Type
2. [B] : Type
3. E : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
4. [\%] : EquivRel(A;x,y.E[x;y])
5. \mforall{}f:A {}\mrightarrow{} B. \mforall{}b:B. SqStable(\mexists{}a:A. ((f a) = b))
6. f : (x,y:A//E[x;y]) {}\mrightarrow{} B
7. Inj(x,y:A//E[x;y];B;f)
8. \mforall{}b:B. \mexists{}a:x,y:A//E[x;y]. ((f a) = b)
9. b : B
10. [a1] : Base
11. [b1] : Base
12. [c] : a1 = b1
13. (f a1) = b
\mvdash{} \mdownarrow{}\mexists{}a:A. ((f a) = b)
By
Latex:
Unhide
Home
Index