Nuprl Lemma : finite-decidable-subset
∀T:Type. ∀B:T ⟶ ℙ.  (finite(T) 
⇒ (∀x:T. Dec(↓B[x])) 
⇒ finite({t:T| B[t]} ))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equipollent-split, 
all_wf, 
decidable_wf, 
squash_wf, 
finite_wf, 
finite_functionality_wrt_equipollent, 
not_wf, 
finite-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
unionEquality, 
setEquality, 
productElimination, 
dependent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}T:Type.  \mforall{}B:T  {}\mrightarrow{}  \mBbbP{}.    (finite(T)  {}\mRightarrow{}  (\mforall{}x:T.  Dec(\mdownarrow{}B[x]))  {}\mRightarrow{}  finite(\{t:T|  B[t]\}  ))
Date html generated:
2016_10_21-AM-11_00_59
Last ObjectModification:
2016_08_06-PM-04_52_14
Theory : equipollence!!cardinality!
Home
Index