Nuprl Lemma : finite-decidable-subset

T:Type. ∀B:T ⟶ ℙ.  (finite(T)  (∀x:T. Dec(↓B[x]))  finite({t:T| B[t]} ))


Proof




Definitions occuring in Statement :  finite: finite(T) decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] squash: T implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  equipollent-split all_wf decidable_wf squash_wf finite_wf finite_functionality_wrt_equipollent not_wf finite-union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality universeEquality unionEquality setEquality productElimination dependent_functionElimination independent_pairFormation

Latex:
\mforall{}T:Type.  \mforall{}B:T  {}\mrightarrow{}  \mBbbP{}.    (finite(T)  {}\mRightarrow{}  (\mforall{}x:T.  Dec(\mdownarrow{}B[x]))  {}\mRightarrow{}  finite(\{t:T|  B[t]\}  ))



Date html generated: 2016_10_21-AM-11_00_59
Last ObjectModification: 2016_08_06-PM-04_52_14

Theory : equipollence!!cardinality!


Home Index