Nuprl Lemma : equipollent-split

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(↓P[x]))  {x:T| P[x]}  {x:T| ¬P[x]} )


Proof




Definitions occuring in Statement :  equipollent: B decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: ¬A squash: T implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_apply: x[s] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q equipollent: B exists: x:A. B[x] not: ¬A squash: T false: False biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) uimplies: supposing a guard: {T} isl: isl(x) uiff: uiff(P;Q)
Lemmas referenced :  decidable_wf squash_wf istype-universe subtype_rel_self not_wf equipollent_functionality_wrt_equipollent2 union_functionality_wrt_equipollent equipollent-set biject_wf equal_functionality_wrt_subtype_rel2 btrue_wf bfalse_wf btrue_neq_bfalse not_squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalRule functionIsType universeIsType hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis universeEquality instantiate unionEquality setEquality because_Cache lambdaEquality_alt independent_functionElimination productElimination rename dependent_pairFormation_alt inhabitedIsType unionElimination inlEquality_alt dependent_set_memberEquality_alt setIsType inrEquality_alt imageMemberEquality baseClosed voidElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairFormation unionIsType imageElimination applyLambdaEquality setElimination independent_isectElimination productIsType

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(\mdownarrow{}P[x]))  {}\mRightarrow{}  T  \msim{}  \{x:T|  P[x]\}    +  \{x:T|  \mneg{}P[x]\}  )



Date html generated: 2020_05_19-PM-10_00_26
Last ObjectModification: 2020_01_04-PM-08_00_41

Theory : equipollence!!cardinality!


Home Index