Nuprl Lemma : equipollent-split
∀[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(↓P[x])) 
⇒ T ~ {x:T| P[x]}  + {x:T| ¬P[x]} )
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
false: False
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
uimplies: b supposing a
, 
guard: {T}
, 
isl: isl(x)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
decidable_wf, 
squash_wf, 
istype-universe, 
subtype_rel_self, 
not_wf, 
equipollent_functionality_wrt_equipollent2, 
union_functionality_wrt_equipollent, 
equipollent-set, 
biject_wf, 
equal_functionality_wrt_subtype_rel2, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
not_squash
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalRule, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
universeEquality, 
instantiate, 
unionEquality, 
setEquality, 
because_Cache, 
lambdaEquality_alt, 
independent_functionElimination, 
productElimination, 
rename, 
dependent_pairFormation_alt, 
inhabitedIsType, 
unionElimination, 
inlEquality_alt, 
dependent_set_memberEquality_alt, 
setIsType, 
inrEquality_alt, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_pairFormation, 
unionIsType, 
imageElimination, 
applyLambdaEquality, 
setElimination, 
independent_isectElimination, 
productIsType
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(\mdownarrow{}P[x]))  {}\mRightarrow{}  T  \msim{}  \{x:T|  P[x]\}    +  \{x:T|  \mneg{}P[x]\}  )
Date html generated:
2020_05_19-PM-10_00_26
Last ObjectModification:
2020_01_04-PM-08_00_41
Theory : equipollence!!cardinality!
Home
Index