Nuprl Lemma : union_functionality_wrt_equipollent

[A,B,C,D:Type].  (A   D)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) isl: isl(x) not: ¬A false: False guard: {T} squash: T true: True subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equipollent_wf equal_wf biject_wf btrue_wf bfalse_wf and_wf isl_wf btrue_neq_bfalse squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis universeEquality dependent_pairFormation lambdaEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqequalRule inlEquality applyEquality inrEquality dependent_functionElimination independent_functionElimination independent_pairFormation applyLambdaEquality dependent_set_memberEquality setElimination voidElimination imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate because_Cache independent_isectElimination

Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \msim{}  D  {}\mRightarrow{}  A  +  C  \msim{}  B  +  D)



Date html generated: 2019_06_20-PM-02_16_52
Last ObjectModification: 2019_06_19-PM-06_19_59

Theory : equipollence!!cardinality!


Home Index