Nuprl Lemma : finite-implies-finite'

[A:Type]. (finite(A)  finite'(A))


Proof




Definitions occuring in Statement :  finite: finite(T) finite': finite'(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q finite: finite(T) exists: x:A. B[x] member: t ∈ T nat: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q all: x:A. B[x] prop:
Lemmas referenced :  finite'_functionality_wrt_equipollent int_seg_wf nsub_finite' finite_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality setElimination rename hypothesis independent_functionElimination dependent_functionElimination cumulativity universeEquality

Latex:
\mforall{}[A:Type].  (finite(A)  {}\mRightarrow{}  finite'(A))



Date html generated: 2016_10_21-AM-11_00_24
Last ObjectModification: 2016_08_06-PM-02_37_25

Theory : equipollence!!cardinality!


Home Index