Nuprl Lemma : finite-implies-finite'
∀[A:Type]. (finite(A) 
⇒ finite'(A))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
finite': finite'(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
finite: finite(T)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
finite'_functionality_wrt_equipollent, 
int_seg_wf, 
nsub_finite', 
finite_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  (finite(A)  {}\mRightarrow{}  finite'(A))
Date html generated:
2016_10_21-AM-11_00_24
Last ObjectModification:
2016_08_06-PM-02_37_25
Theory : equipollence!!cardinality!
Home
Index