Nuprl Lemma : indep-function_functionality_wrt_equipollent
∀[A,B,C,D:Type].  (A ~ B 
⇒ C ~ D 
⇒ C ⟶ A ~ D ⟶ B)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Lemmas referenced : 
equipollent_transitivity, 
function_functionality_wrt_equipollent_right, 
function_functionality_wrt_equipollent_left, 
equipollent_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionEquality
Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \msim{}  D  {}\mRightarrow{}  C  {}\mrightarrow{}  A  \msim{}  D  {}\mrightarrow{}  B)
Date html generated:
2016_10_21-AM-10_57_51
Last ObjectModification:
2016_08_06-PM-02_55_16
Theory : equipollence!!cardinality!
Home
Index