Nuprl Lemma : isect_functionality_wrt_equipollent_dependent
∀[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  ∀f:A ⟶ B. (A 
⇒ Bij(A;B;f) 
⇒ (∀[a:A]. C[a] ~ D[f a]) 
⇒ ⋂a:A. C[a] ~ ⋂b:B. D[b])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
biject: Bij(A;B;f)
, 
uimplies: b supposing a
, 
top: Top
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
label: ...$L... t
Lemmas referenced : 
biject_wf, 
uall_wf, 
equipollent_wf, 
biject-inverse, 
subtype_rel_self, 
subtype_rel_wf, 
member_wf, 
squash_wf, 
true_wf, 
pair-eta, 
isect_subtype_rel_trivial, 
top_wf, 
exists_wf, 
subtype_rel-equal, 
equal_wf, 
iff_weakening_equal, 
equal_functionality_wrt_subtype_rel2, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
rename, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
productElimination, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation, 
productEquality, 
independent_isectElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
dependent_pairEquality, 
instantiate
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    \mforall{}f:A  {}\mrightarrow{}  B.  (A  {}\mRightarrow{}  Bij(A;B;f)  {}\mRightarrow{}  (\mforall{}[a:A].  C[a]  \msim{}  D[f  a])  {}\mRightarrow{}  \mcap{}a:A.  C[a]  \msim{}  \mcap{}b:B.  D[b])
Date html generated:
2017_04_17-AM-09_31_02
Last ObjectModification:
2017_02_27-PM-05_32_58
Theory : equipollence!!cardinality!
Home
Index