Nuprl Lemma : isect_functionality_wrt_equipollent_dependent

[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  ∀f:A ⟶ B. (A  Bij(A;B;f)  (∀[a:A]. C[a] D[f a])  ⋂a:A. C[a] ~ ⋂b:B. D[b])


Proof




Definitions occuring in Statement :  equipollent: B biject: Bij(A;B;f) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x] pi2: snd(t) pi1: fst(t) and: P ∧ Q subtype_rel: A ⊆B squash: T true: True biject: Bij(A;B;f) uimplies: supposing a top: Top guard: {T} iff: ⇐⇒ Q rev_implies:  Q inject: Inj(A;B;f) surject: Surj(A;B;f) label: ...$L... t
Lemmas referenced :  biject_wf uall_wf equipollent_wf biject-inverse subtype_rel_self subtype_rel_wf member_wf squash_wf true_wf pair-eta isect_subtype_rel_trivial top_wf exists_wf subtype_rel-equal equal_wf iff_weakening_equal equal_functionality_wrt_subtype_rel2 all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule rename dependent_pairFormation cut introduction extract_by_obid isectElimination thin isectEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis lambdaEquality functionEquality universeEquality isect_memberEquality productElimination applyLambdaEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination because_Cache hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed independent_pairFormation productEquality independent_isectElimination independent_pairEquality voidElimination voidEquality dependent_pairEquality instantiate

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    \mforall{}f:A  {}\mrightarrow{}  B.  (A  {}\mRightarrow{}  Bij(A;B;f)  {}\mRightarrow{}  (\mforall{}[a:A].  C[a]  \msim{}  D[f  a])  {}\mRightarrow{}  \mcap{}a:A.  C[a]  \msim{}  \mcap{}b:B.  D[b])



Date html generated: 2017_04_17-AM-09_31_02
Last ObjectModification: 2017_02_27-PM-05_32_58

Theory : equipollence!!cardinality!


Home Index