Nuprl Lemma : biject-inverse
∀[A,B:Type]. ∀[f:A ⟶ B].  (Bij(A;B;f) 
⇒ (∃g:B ⟶ A. ((∀b:B. ((f (g b)) = b ∈ B)) ∧ (∀a:A. ((g (f a)) = a ∈ A)))))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bij_inv_wf, 
biject_wf, 
istype-universe, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
rename, 
dependent_pairFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
universeIsType, 
independent_pairFormation, 
because_Cache, 
productIsType, 
functionIsType, 
equalityIstype, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (Bij(A;B;f)  {}\mRightarrow{}  (\mexists{}g:B  {}\mrightarrow{}  A.  ((\mforall{}b:B.  ((f  (g  b))  =  b))  \mwedge{}  (\mforall{}a:A.  ((g  (f  a))  =  a)))))
Date html generated:
2020_05_19-PM-09_43_38
Last ObjectModification:
2020_01_04-PM-07_59_56
Theory : list_1
Home
Index