Nuprl Lemma : biject-inverse

[A,B:Type]. ∀[f:A ⟶ B].  (Bij(A;B;f)  (∃g:B ⟶ A. ((∀b:B. ((f (g b)) b ∈ B)) ∧ (∀a:A. ((g (f a)) a ∈ A)))))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B all: x:A. B[x] prop: guard: {T} biject: Bij(A;B;f) inject: Inj(A;B;f) squash: T true: True uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bij_inv_wf biject_wf istype-universe equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt rename dependent_pairFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule universeIsType independent_pairFormation because_Cache productIsType functionIsType equalityIstype instantiate universeEquality dependent_functionElimination productElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (Bij(A;B;f)  {}\mRightarrow{}  (\mexists{}g:B  {}\mrightarrow{}  A.  ((\mforall{}b:B.  ((f  (g  b))  =  b))  \mwedge{}  (\mforall{}a:A.  ((g  (f  a))  =  a)))))



Date html generated: 2020_05_19-PM-09_43_38
Last ObjectModification: 2020_01_04-PM-07_59_56

Theory : list_1


Home Index