Nuprl Lemma : one_one_corr_equipollent
∀[A,B:Type].  (1-1-Corresp(A;B) 
⇐⇒ A ~ B)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
one_one_corr: 1-1-Corresp(A;B)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
one_one_corr: 1-1-Corresp(A;B)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
one_one_corr_wf, 
sq_exists_wf, 
inv_funs_wf, 
pi1_wf, 
pi2_wf, 
equipollent-iff-inverse-funs, 
equipollent_wf, 
iff_wf, 
exists_wf, 
sq_stable__inv_funs
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productEquality, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
addLevel, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
dependent_set_memberFormation, 
independent_pairEquality, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[A,B:Type].    (1-1-Corresp(A;B)  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  B)
Date html generated:
2019_06_20-PM-02_16_46
Last ObjectModification:
2018_08_24-PM-11_37_01
Theory : equipollence!!cardinality!
Home
Index