Nuprl Lemma : sq_stable__inv_funs

[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].  SqStable(InvFuns(A;B;f;g))


Proof




Definitions occuring in Statement :  inv_funs: InvFuns(A;B;f;g) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q tidentity: Id{T}
Lemmas referenced :  sq_stable__and equal_wf compose_wf tidentity_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality productEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].    SqStable(InvFuns(A;B;f;g))



Date html generated: 2019_06_20-PM-00_26_20
Last ObjectModification: 2018_09_26-PM-00_06_23

Theory : fun_1


Home Index