Step
*
2
2
1
of Lemma
Coquand-fan-theorem
1. [T] : Type
2. n : ℕ
3. ∃f:ℕn ⟶ T. Surj(ℕn;T;f)
4. y : 0 = 0 ∈ ℤ
5. f : T ⟶ wfd-tree(T)
6. ∀b:T. ∀A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ.
((∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (∀m:{n...}. ∀t:ℕm ⟶ T. ((t = s ∈ (ℕn ⟶ T))
⇒ (A m t)))))
⇒ (f b|A)
⇒ (∃N:ℕ. ∀m:{N...}. ∀as:ℕm ⟶ T. (A m as)))
7. A : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
8. ∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (∀m:{n...}. ∀t:ℕm ⟶ T. ((t = s ∈ (ℕn ⟶ T))
⇒ (A m t))))
9. ∀x:T. (f x|A_x)
10. ∀x:T. ∃N:ℕ. ∀m:{N...}. ∀as:ℕm ⟶ T. (A_x m as)
11. N : x:T ⟶ ℕ
12. ∀x:T. ∀m:{N x...}. ∀as:ℕm ⟶ T. (A_x m as)
⊢ ∃N:ℕ. ∀m:{N...}. ∀as:ℕm ⟶ T. (A m as)
BY
{ (RenameVar `z2' 5⋅
THEN (ExRepD
THEN (Assert 1 ≤ imax-list([1 / map(λi.((N (f i)) + 1);upto(n))]) BY
(BLemma `imax-list-ub`
THEN Try (Complete (Auto'))
THEN (With ⌜0⌝ (D 0)⋅ THEN Reduce 0)
THEN Auto'))⋅
)
THEN (With ⌜imax-list([1 / map(λi.((N (f i)) + 1);upto(n))])⌝ (D 0)⋅ THEN Auto THEN Reduce 0 THEN Auto')⋅) }
1
1. [T] : Type
2. n : ℕ
3. f : ℕn ⟶ T
4. Surj(ℕn;T;f)
5. y : 0 = 0 ∈ ℤ
6. z2 : T ⟶ wfd-tree(T)
7. ∀b:T. ∀A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ.
((∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (∀m:{n...}. ∀t:ℕm ⟶ T. ((t = s ∈ (ℕn ⟶ T))
⇒ (A m t)))))
⇒ (z2 b|A)
⇒ (∃N:ℕ. ∀m:{N...}. ∀as:ℕm ⟶ T. (A m as)))
8. A : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
9. ∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (∀m:{n...}. ∀t:ℕm ⟶ T. ((t = s ∈ (ℕn ⟶ T))
⇒ (A m t))))
10. ∀x:T. (z2 x|A_x)
11. ∀x:T. ∃N:ℕ. ∀m:{N...}. ∀as:ℕm ⟶ T. (A_x m as)
12. N : x:T ⟶ ℕ
13. ∀x:T. ∀m:{N x...}. ∀as:ℕm ⟶ T. (A_x m as)
14. 1 ≤ imax-list([1 / map(λi.((N (f i)) + 1);upto(n))])
15. m : {imax-list([1 / map(λi.((N (f i)) + 1);upto(n))])...}
16. as : ℕm ⟶ T
⊢ A m as
Latex:
Latex:
1. [T] : Type
2. n : \mBbbN{}
3. \mexists{}f:\mBbbN{}n {}\mrightarrow{} T. Surj(\mBbbN{}n;T;f)
4. y : 0 = 0
5. f : T {}\mrightarrow{} wfd-tree(T)
6. \mforall{}b:T. \mforall{}A:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}.
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. ((A n s) {}\mRightarrow{} (\mforall{}m:\{n...\}. \mforall{}t:\mBbbN{}m {}\mrightarrow{} T. ((t = s) {}\mRightarrow{} (A m t)))))
{}\mRightarrow{} (f b|A)
{}\mRightarrow{} (\mexists{}N:\mBbbN{}. \mforall{}m:\{N...\}. \mforall{}as:\mBbbN{}m {}\mrightarrow{} T. (A m as)))
7. A : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}
8. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. ((A n s) {}\mRightarrow{} (\mforall{}m:\{n...\}. \mforall{}t:\mBbbN{}m {}\mrightarrow{} T. ((t = s) {}\mRightarrow{} (A m t))))
9. \mforall{}x:T. (f x|A\_x)
10. \mforall{}x:T. \mexists{}N:\mBbbN{}. \mforall{}m:\{N...\}. \mforall{}as:\mBbbN{}m {}\mrightarrow{} T. (A\_x m as)
11. N : x:T {}\mrightarrow{} \mBbbN{}
12. \mforall{}x:T. \mforall{}m:\{N x...\}. \mforall{}as:\mBbbN{}m {}\mrightarrow{} T. (A\_x m as)
\mvdash{} \mexists{}N:\mBbbN{}. \mforall{}m:\{N...\}. \mforall{}as:\mBbbN{}m {}\mrightarrow{} T. (A m as)
By
Latex:
(RenameVar `z2' 5\mcdot{}
THEN (ExRepD
THEN (Assert 1 \mleq{} imax-list([1 / map(\mlambda{}i.((N (f i)) + 1);upto(n))]) BY
(BLemma `imax-list-ub`
THEN Try (Complete (Auto'))
THEN (With \mkleeneopen{}0\mkleeneclose{} (D 0)\mcdot{} THEN Reduce 0)
THEN Auto'))\mcdot{}
)
THEN (With \mkleeneopen{}imax-list([1 / map(\mlambda{}i.((N (f i)) + 1);upto(n))])\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN Reduce 0
THEN Auto')\mcdot{})
Home
Index