Step
*
1
1
of Lemma
Veldman-Ramsey
1. T : Type@i'
2. n : ℕ@i
3. [R] : n-aryRel(T)
4. [S] : n-aryRel(T)
5. p : wfd-tree(T)@i
6. tree-secures(T;[[R]];p)@i
7. p1 : wfd-tree(T)@i
8. tree-secures(T;[[S]];p1)@i
9. tree-secures(T;λm,s. ((((λn,s. False) m s) ∨ ((λn,s. False) m s)) ∨ (([[R]] m s) ∧ ([[S]] m s)));tree-tensor(n;p;p1))
⊢ almost-full(T;n;R ∧ S)
BY
{ (Reduce (-1)
THEN (Assert R ∧ S ∈ n-aryRel(T) BY
(RepUR ``nary-rel prop_and`` 0 THEN Auto))
THEN With ⌜tree-tensor(n;p;p1)⌝ (D 0)⋅
THEN Auto
THEN TreeSecuresFunctionality
THEN Reduce 0
THEN Auto
THEN SplitOrHyps
THEN Auto
THEN All (RepUR ``nary-rel-predicate prop_and``)
THEN Auto) }
Latex:
Latex:
1. T : Type@i'
2. n : \mBbbN{}@i
3. [R] : n-aryRel(T)
4. [S] : n-aryRel(T)
5. p : wfd-tree(T)@i
6. tree-secures(T;[[R]];p)@i
7. p1 : wfd-tree(T)@i
8. tree-secures(T;[[S]];p1)@i
9. tree-secures(T;\mlambda{}m,s. ((((\mlambda{}n,s. False) m s) \mvee{} ((\mlambda{}n,s. False) m s))
\mvee{} (([[R]] m s) \mwedge{} ([[S]] m s)));tree-tensor(n;p;p1))
\mvdash{} almost-full(T;n;R \mwedge{} S)
By
Latex:
(Reduce (-1)
THEN (Assert R \mwedge{} S \mmember{} n-aryRel(T) BY
(RepUR ``nary-rel prop\_and`` 0 THEN Auto))
THEN With \mkleeneopen{}tree-tensor(n;p;p1)\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN TreeSecuresFunctionality
THEN Reduce 0
THEN Auto
THEN SplitOrHyps
THEN Auto
THEN All (RepUR ``nary-rel-predicate prop\_and``)
THEN Auto)
Home
Index