Nuprl Lemma : Veldman-Ramsey
Ramsey's theorem - 
     infinite version has a constructive version here⋅
∀T:Type. ∀n:ℕ.  ∀[R,S:n-aryRel(T)].  (almost-full(T;n;R) 
⇒ almost-full(T;n;S) 
⇒ almost-full(T;n;R ∧ S))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
almost-full: almost-full(T;n;R)
, 
nary-rel: n-aryRel(T)
, 
prop_and: P ∧ Q
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
almost-full: almost-full(T;n;R)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
nat: ℕ
, 
guard: {T}
, 
or: P ∨ Q
, 
prop_and: P ∧ Q
, 
nary-rel: n-aryRel(T)
, 
false: False
, 
and: P ∧ Q
, 
nary-rel-predicate: [[R]]
, 
cand: A c∧ B
Lemmas referenced : 
almost-full_wf, 
nary-rel_wf, 
nat_wf, 
false_wf, 
int_seg_wf, 
tree-secures_functionality, 
nary-rel-predicate_wf, 
or_wf, 
Veldman-Coquand, 
and_wf, 
tree-tensor_wf, 
tree-secures_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
applyEquality, 
independent_functionElimination, 
inrFormation, 
dependent_pairFormation, 
unionElimination, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}T:Type.  \mforall{}n:\mBbbN{}.
    \mforall{}[R,S:n-aryRel(T)].    (almost-full(T;n;R)  {}\mRightarrow{}  almost-full(T;n;S)  {}\mRightarrow{}  almost-full(T;n;R  \mwedge{}  S))
Date html generated:
2016_07_08-PM-04_49_44
Last ObjectModification:
2015_12_26-PM-07_54_56
Theory : fan-theorem
Home
Index