Nuprl Lemma : nary-rel-predicate_wf

[T:Type]. ∀[n:ℕ]. ∀[R:n-aryRel(T)].  ([[R]] ∈ n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ)


Proof




Definitions occuring in Statement :  nary-rel-predicate: [[R]] nary-rel: n-aryRel(T) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nary-rel-predicate: [[R]] prop: and: P ∧ Q nat: nary-rel: n-aryRel(T) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q all: x:A. B[x]
Lemmas referenced :  le_wf subtype_rel_dep_function int_seg_wf int_seg_subtype false_wf nat_wf nary-rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality natural_numberEquality independent_isectElimination because_Cache independent_pairFormation lambdaFormation universeEquality functionEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[R:n-aryRel(T)].    ([[R]]  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_07_19
Last ObjectModification: 2015_12_26-PM-07_55_07

Theory : fan-theorem


Home Index