Nuprl Lemma : almost-full_wf

[T:Type]. ∀[n:ℕ]. ∀[R:n-aryRel(T)].  (almost-full(T;n;R) ∈ ℙ)


Proof




Definitions occuring in Statement :  almost-full: almost-full(T;n;R) nary-rel: n-aryRel(T) nat: uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T almost-full: almost-full(T;n;R) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf wfd-tree_wf tree-secures_wf nary-rel-predicate_wf nary-rel_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[R:n-aryRel(T)].    (almost-full(T;n;R)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_07_34
Last ObjectModification: 2015_12_26-PM-07_55_03

Theory : fan-theorem


Home Index