Nuprl Lemma : almost-full_wf
∀[T:Type]. ∀[n:ℕ]. ∀[R:n-aryRel(T)].  (almost-full(T;n;R) ∈ ℙ)
Proof
Definitions occuring in Statement : 
almost-full: almost-full(T;n;R)
, 
nary-rel: n-aryRel(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
almost-full: almost-full(T;n;R)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
wfd-tree_wf, 
tree-secures_wf, 
nary-rel-predicate_wf, 
nary-rel_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[R:n-aryRel(T)].    (almost-full(T;n;R)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_07_34
Last ObjectModification:
2015_12_26-PM-07_55_03
Theory : fan-theorem
Home
Index