Nuprl Lemma : tree-tensor_wf
∀[T:Type]. ∀[n:ℕ]. ∀[p,q:wfd-tree(T)].  (tree-tensor(n;p;q) ∈ wfd-tree(T))
Proof
Definitions occuring in Statement : 
tree-tensor: tree-tensor(n;p;q), 
wfd-tree: wfd-tree(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
wfd-tree: wfd-tree(T), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than: a < b, 
tree-tensor: tree-tensor(n;p;q), 
Wsup: Wsup(a;b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
int_upper: {i...}, 
pcw-pp-barred: Barred(pp), 
cw-step: cw-step(A;a.B[a]), 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
spreadn: spread3, 
true: True, 
squash: ↓T, 
isr: isr(x), 
ext-eq: A ≡ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
ext-family: F ≡ G, 
pi1: fst(t), 
nat_plus: ℕ+, 
W-rel: W-rel(A;a.B[a];w), 
param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w), 
pcw-steprel: StepRel(s1;s2), 
pi2: snd(t), 
isl: isl(x), 
pcw-step-agree: StepAgree(s;p1;w), 
cand: A c∧ B
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
wfd-tree_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
W_wf, 
bool_wf, 
ifthenelse_wf, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
Wsup_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
btrue_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
int_upper_properties, 
W-elimination-facts, 
top_wf, 
true_wf, 
add-subtract-cancel, 
W-ext, 
param-co-W-ext, 
unit_wf2, 
it_wf, 
param-co-W_wf, 
ext-eq_inversion, 
subtype_rel_weakening, 
assert_wf, 
bfalse_wf, 
pcw-steprel_wf, 
set_subtype_base, 
int_subtype_base, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
instantiate, 
universeEquality, 
addEquality, 
equalityElimination, 
functionExtensionality, 
promote_hyp, 
strong_bar_Induction, 
lessCases, 
sqequalAxiom, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqReduceTrueSq, 
dependent_pairEquality, 
functionEquality, 
productEquality, 
inlEquality, 
unionEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[p,q:wfd-tree(T)].    (tree-tensor(n;p;q)  \mmember{}  wfd-tree(T))
Date html generated:
2017_04_17-AM-09_36_14
Last ObjectModification:
2017_02_27-PM-05_35_44
Theory : fan-theorem
Home
Index