Step
*
1
of Lemma
alt-bar-sep-wkl!
1. [T] : Type
2. BarSep(T;T)
3. A : {A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹| Tree(A) ∧ Unbounded(A)}
4. ¬bar(¬(A))
5. AtMostOnePath(A)
6. Tree(A)
7. t0 : T
8. ∀a,b:T. Dec(a = b ∈ T)
9. L : T List
10. ∀x:T. (x ∈ L)
11. ¬↑null(L)
⊢ ∃f:ℕ ⟶ T [IsPath(A;f)]
BY
{ Assert ⌜∀n:ℕ. ∀s:ℕn ⟶ T. ∃t:T. ∀t':T. ((¬(t' = t ∈ T))
⇒ bar(¬(λk,s'. (A ((n + 1) + k) seq-append(n + 1;s.t';s'))))\000C)⌝⋅ }
1
.....assertion.....
1. [T] : Type
2. BarSep(T;T)
3. A : {A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹| Tree(A) ∧ Unbounded(A)}
4. ¬bar(¬(A))
5. AtMostOnePath(A)
6. Tree(A)
7. t0 : T
8. ∀a,b:T. Dec(a = b ∈ T)
9. L : T List
10. ∀x:T. (x ∈ L)
11. ¬↑null(L)
⊢ ∀n:ℕ. ∀s:ℕn ⟶ T. ∃t:T. ∀t':T. ((¬(t' = t ∈ T))
⇒ bar(¬(λk,s'. (A ((n + 1) + k) seq-append(n + 1;s.t';s')))))
2
1. [T] : Type
2. BarSep(T;T)
3. A : {A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹| Tree(A) ∧ Unbounded(A)}
4. ¬bar(¬(A))
5. AtMostOnePath(A)
6. Tree(A)
7. t0 : T
8. ∀a,b:T. Dec(a = b ∈ T)
9. L : T List
10. ∀x:T. (x ∈ L)
11. ¬↑null(L)
12. ∀n:ℕ. ∀s:ℕn ⟶ T. ∃t:T. ∀t':T. ((¬(t' = t ∈ T))
⇒ bar(¬(λk,s'. (A ((n + 1) + k) seq-append(n + 1;s.t';s')))))
⊢ ∃f:ℕ ⟶ T [IsPath(A;f)]
Latex:
Latex:
1. [T] : Type
2. BarSep(T;T)
3. A : \{A:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbB{}| Tree(A) \mwedge{} Unbounded(A)\}
4. \mneg{}bar(\mneg{}(A))
5. AtMostOnePath(A)
6. Tree(A)
7. t0 : T
8. \mforall{}a,b:T. Dec(a = b)
9. L : T List
10. \mforall{}x:T. (x \mmember{} L)
11. \mneg{}\muparrow{}null(L)
\mvdash{} \mexists{}f:\mBbbN{} {}\mrightarrow{} T [IsPath(A;f)]
By
Latex:
Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T.
\mexists{}t:T. \mforall{}t':T. ((\mneg{}(t' = t)) {}\mRightarrow{} bar(\mneg{}(\mlambda{}k,s'. (A ((n + 1) + k) seq-append(n + 1;s.t';s')))))\mkleeneclose{}\mcdot{}
Home
Index