Nuprl Lemma : alt-bar-sep-wkl!

[T:Type]
  ((∃size:ℕ~ ℕsize)
   BarSep(T;T)
   (∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹Tree(A) ∧ Unbounded(A)} bar(¬(A))))
   WKL!(T))


Proof




Definitions occuring in Statement :  alt-wkl!: WKL!(T) altneg: ¬(A) altbarsep: BarSep(T;S) alttree: Tree(A) altunbounded: Unbounded(A) altbar: bar(X) equipollent: B int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  altbar: bar(X) altpath: IsPath(A;f) sq_exists: x:A [B[x]] pi1: fst(t) nat_plus: + rev_uimplies: rev_uimplies(P;Q) altneg: ¬(A) seq+: s.t bnot: ¬bb uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 seq-append: seq-append(n;s;s') alt-one-path: AtMostOnePath(A) altjbar: jbar(X;Y) altbarsep: BarSep(T;S) rev_implies:  Q cand: c∧ B select: L[n] l_member: (x ∈ l) true: True inject: Inj(A;B;f) bfalse: ff cons: [a b] btrue: tt ifthenelse: if then else fi  assert: b finite-type: finite-type(T) iff: ⇐⇒ Q surject: Surj(A;B;f) biject: Bij(A;B;f) altunbounded: Unbounded(A) equipollent: B sq_type: SQType(T) so_apply: x[s] guard: {T} sq_stable: SqStable(P) less_than': less_than'(a;b) subtype_rel: A ⊆B top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) exists: x:A. B[x] ge: i ≥  squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: prop: so_lambda: λ2x.t[x] alttree: Tree(A) member: t ∈ T all: x:A. B[x] alt-wkl!: WKL!(T) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal true_wf squash_wf primrec-wf2 not_assert_elim assert_elim decidable__equal_function altpath_wf lelt_wf set_subtype_base subtract-1-ge-0 ge_wf false_wf add-is-int-iff nat_plus_properties length_wf_nat add_nat_wf add_nat_plus bnot_wf assert_of_bnot int_seg_subtype_nat int_term_value_subtract_lemma itermSubtract_wf subtract_wf less_than_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf cons_member subtype_rel_sets_simple member_singleton select_wf length_wf cons_wf length_of_nil_lemma length_of_cons_lemma istype-true list_wf equal_wf null_wf not_wf list_induction seq+_wf seq-append_wf int_term_value_add_lemma itermAdd_wf l_member_wf istype-universe equipollent_wf altbarsep_wf altneg_wf altbar_wf altunbounded_wf alttree_wf bool_wf alt-one-path_wf null_cons_lemma product_subtype_list btrue_neq_bfalse nil_wf member-implies-null-eq-bfalse btrue_wf null_nil_lemma list-cases surject_wf equipollent_inversion finite-type-iff-list decidable__equal_int_seg int_formula_prop_eq_lemma intformeq_wf istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt int_subtype_base subtype_base_sq decidable__equal_int assert_witness decidable__assert sq_stable_from_decidable istype-assert istype-nat subtype_rel_self le_weakening2 sq_stable__le istype-false int_seg_subtype subtype_rel_function istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties assert_wf int_seg_wf nat_wf sq_stable__all
Rules used in proof :  Error :functionExtensionality_alt,  axiomEquality intWeakElimination functionExtensionality baseApply pointwiseFunctionality hyp_replacement equalityElimination closedConclusion setEquality productEquality addEquality universeEquality Error :setIsType,  hypothesis_subsumption Error :inrFormation_alt,  Error :equalityIstype,  Error :inlFormation_alt,  applyLambdaEquality equalitySymmetry equalityTransitivity Error :productIsType,  intEquality cumulativity instantiate Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :functionIsType,  baseClosed imageMemberEquality Error :universeIsType,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination unionElimination imageElimination productElimination Error :dependent_set_memberEquality_alt,  because_Cache applyEquality natural_numberEquality functionEquality Error :lambdaEquality_alt,  sqequalRule hypothesis isectElimination extract_by_obid introduction rename setElimination cut promote_hyp hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)
    {}\mRightarrow{}  BarSep(T;T)
    {}\mRightarrow{}  (\mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\}  .  (\mneg{}bar(\mneg{}(A))))
    {}\mRightarrow{}  WKL!(T))



Date html generated: 2019_06_20-PM-02_46_55
Last ObjectModification: 2019_06_07-AM-11_57_39

Theory : fan-theorem


Home Index