Nuprl Lemma : seq+_wf

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[t:T].  (s.t ∈ ℕ1 ⟶ T)


Proof




Definitions occuring in Statement :  seq+: s.t int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  bfalse: ff prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat: int_seg: {i..j-} seq+: s.t member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe istype-nat int_seg_wf istype-less_than istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties assert_of_lt_int eqtt_to_assert lt_int_wf
Rules used in proof :  universeEquality instantiate Error :functionIsType,  Error :isectIsTypeImplies,  axiomEquality addEquality equalitySymmetry equalityTransitivity Error :equalityIstype,  Error :productIsType,  Error :universeIsType,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation natural_numberEquality dependent_functionElimination imageElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  hypothesisEquality applyEquality independent_isectElimination productElimination equalityElimination unionElimination Error :lambdaFormation_alt,  Error :inhabitedIsType,  isectElimination extract_by_obid hypothesis because_Cache rename thin setElimination sqequalHypSubstitution Error :lambdaEquality_alt,  sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[t:T].    (s.t  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  T)



Date html generated: 2019_06_20-PM-02_46_44
Last ObjectModification: 2019_06_06-PM-02_24_21

Theory : fan-theorem


Home Index