Nuprl Lemma : altpath_wf
∀[T:Type]. ∀[A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹]. ∀[f:ℕ ⟶ T].  (IsPath(A;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
altpath: IsPath(A;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
altpath: IsPath(A;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
bool_wf, 
istype-nat, 
subtype_rel_self, 
istype-false, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_function, 
assert_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
independent_isectElimination, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (IsPath(A;f)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_46_23
Last ObjectModification:
2019_06_06-PM-01_46_26
Theory : fan-theorem
Home
Index