Nuprl Lemma : seq-append_wf

[T:Type]. ∀[n,k:ℕ]. ∀[s:ℕn ⟶ T]. ∀[s':ℕk ⟶ T].  (seq-append(n;s;s') ∈ ℕk ⟶ T)


Proof




Definitions occuring in Statement :  seq-append: seq-append(n;s;s') int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat: int_seg: {i..j-} seq-append: seq-append(n;s;s') member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe istype-nat int_seg_wf int_term_value_add_lemma itermAdd_wf decidable__lt int_formula_prop_less_lemma int_term_value_subtract_lemma intformless_wf itermSubtract_wf subtract_wf less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert istype-less_than istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties assert_of_lt_int eqtt_to_assert lt_int_wf
Rules used in proof :  universeEquality isectIsTypeImplies functionIsType axiomEquality addEquality cumulativity instantiate promote_hyp equalityIstype equalitySymmetry equalityTransitivity productIsType universeIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation natural_numberEquality dependent_functionElimination imageElimination independent_pairFormation dependent_set_memberEquality_alt hypothesisEquality applyEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation_alt inhabitedIsType isectElimination extract_by_obid hypothesis because_Cache rename thin setElimination sqequalHypSubstitution lambdaEquality_alt sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[n,k:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[s':\mBbbN{}k  {}\mrightarrow{}  T].    (seq-append(n;s;s')  \mmember{}  \mBbbN{}n  +  k  {}\mrightarrow{}  T)



Date html generated: 2019_10_15-AM-10_25_49
Last ObjectModification: 2019_10_07-PM-00_18_48

Theory : fan-theorem


Home Index