Nuprl Lemma : seq-append_wf
∀[T:Type]. ∀[n,k:ℕ]. ∀[s:ℕn ⟶ T]. ∀[s':ℕk ⟶ T].  (seq-append(n;s;s') ∈ ℕn + k ⟶ T)
Proof
Definitions occuring in Statement : 
seq-append: seq-append(n;s;s')
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
seq-append: seq-append(n;s;s')
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
istype-nat, 
int_seg_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__lt, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
intformless_wf, 
itermSubtract_wf, 
subtract_wf, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
istype-less_than, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf
Rules used in proof : 
universeEquality, 
isectIsTypeImplies, 
functionIsType, 
axiomEquality, 
addEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
productIsType, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
natural_numberEquality, 
dependent_functionElimination, 
imageElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
isectElimination, 
extract_by_obid, 
hypothesis, 
because_Cache, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[n,k:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[s':\mBbbN{}k  {}\mrightarrow{}  T].    (seq-append(n;s;s')  \mmember{}  \mBbbN{}n  +  k  {}\mrightarrow{}  T)
Date html generated:
2019_10_15-AM-10_25_49
Last ObjectModification:
2019_10_07-PM-00_18_48
Theory : fan-theorem
Home
Index