Nuprl Lemma : altunbounded_wf

[T:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹].  (Unbounded(X) ∈ ℙ)


Proof




Definitions occuring in Statement :  altunbounded: Unbounded(A) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  nat: exists: x:A. B[x] all: x:A. B[x] prop: altunbounded: Unbounded(A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe bool_wf istype-nat assert_wf int_seg_wf nat_wf
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :functionIsType,  equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution productEquality hypothesis extract_by_obid functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].    (Unbounded(X)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_46_06
Last ObjectModification: 2019_06_06-PM-01_25_11

Theory : fan-theorem


Home Index