Nuprl Lemma : altunbounded_wf
∀[T:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹].  (Unbounded(X) ∈ ℙ)
Proof
Definitions occuring in Statement : 
altunbounded: Unbounded(A)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
altunbounded: Unbounded(A)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
bool_wf, 
istype-nat, 
assert_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
productEquality, 
hypothesis, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].    (Unbounded(X)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_46_06
Last ObjectModification:
2019_06_06-PM-01_25_11
Theory : fan-theorem
Home
Index