Nuprl Lemma : member_singleton

[T:Type]. ∀a,x:T.  ((x ∈ [a]) ⇐⇒ a ∈ T)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) cons: [a b] nil: [] uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_member: (x ∈ l) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] cand: c∧ B prop: so_lambda: λ2x.t[x] nat: uimplies: supposing a sq_stable: SqStable(P) squash: T so_apply: x[s] rev_implies:  Q decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) le: A ≤ B sq_type: SQType(T) guard: {T} select: L[n] cons: [a b] nequal: a ≠ b ∈  subtype_rel: A ⊆B not: ¬A less_than': less_than'(a;b) true: True false: False subtract: m less_than: a < b
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma exists_wf nat_wf less_than_wf equal_wf select_wf cons_wf nil_wf sq_stable__le length-singleton decidable__assert eq_int_wf assert_of_eq_int subtype_base_sq set_subtype_base le_wf int_subtype_base neg_assert_of_eq_int not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less-iff-le le-add-cancel2 false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation independent_pairFormation productElimination isectElimination lambdaEquality productEquality setElimination rename because_Cache natural_numberEquality cumulativity hypothesisEquality independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination universeEquality unionElimination instantiate intEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry addEquality applyEquality minusEquality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}a,x:T.    ((x  \mmember{}  [a])  \mLeftarrow{}{}\mRightarrow{}  x  =  a)



Date html generated: 2017_04_14-AM-08_37_24
Last ObjectModification: 2017_02_27-PM-03_29_24

Theory : list_0


Home Index