Nuprl Lemma : altneg-altneg

[T:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹].  (X)) X ∈ (n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹))


Proof




Definitions occuring in Statement :  altneg: ¬(A) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  nat: altneg: ¬(A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe bool_wf istype-nat nat_wf int_seg_wf bnot_bnot_elim
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :isectIsTypeImplies,  axiomEquality Error :isect_memberEquality_alt,  Error :universeIsType,  Error :functionIsType,  rename setElimination natural_numberEquality functionEquality hypothesis hypothesisEquality applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule functionExtensionality cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].    (\mneg{}(\mneg{}(X))  =  X)



Date html generated: 2019_06_20-PM-02_46_20
Last ObjectModification: 2019_06_06-PM-02_00_10

Theory : fan-theorem


Home Index